skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bi, Zhen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Symmetry in mixed quantum states can manifest in two distinct forms: , where each individual pure state in the quantum ensemble is symmetric with the same charge, and , which applies only to the entire ensemble. This paper explores a novel type of spontaneous symmetry breaking (SSB) where a strong symmetry is broken to a weak one. While the SSB of a weak symmetry is measured by the long-ranged two-point correlation function, the strong-to-weak SSB (SWSSB) is measured by the . We prove that SWSSB is a universal property of mixed-state quantum phases, in the sense that the phenomenon of SWSSB is robust against symmetric low-depth local quantum channels. We also show that the symmetry breaking is “spontaneous” in the sense that the effect of a local symmetry-breaking measurement cannot be recovered locally. We argue that a thermal state at a nonzero temperature in the canonical ensemble (with fixed symmetry charge) should have spontaneously broken strong symmetry. Additionally, we study nonthermal scenarios where decoherence induces SWSSB, leading to phase transitions described by classical statistical models with bond randomness. In particular, the SWSSB transition of a decohered Ising model can be viewed as the “ungauged” version of the celebrated toric-code decodability transition. We confirm that, in the decohered Ising model, the SWSSB transition defined by the fidelity correlator is the only physical transition in terms of channel recoverability. We also comment on other (inequivalent) definitions of SWSSB, through correlation functions with higher Rényi indices. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract The presence of topological flat minibands in moiré materials provides an opportunity to explore the interplay between topology and correlation. In this work, we study moiré minibands in topological insulator films with two hybridized surface states under a moiré superlattice potential created by two-dimensional insulating materials. We show the lowest conduction (highest valence) Kramers’ pair of minibands can be$${{\mathbb{Z}}}_{2}$$ Z 2 non-trivial when the minima (maxima) of moiré potential approximately form a hexagonal lattice with six-fold rotation symmetry. Coulomb interaction can drive the non-trivial Kramers’ minibands into the quantum anomalous Hall state when they are half-filled, which is further stabilized by applying external gate voltages to break inversion. We propose the monolayer Sb2on top of Sb2Te3films as a candidate based on first principles calculations. Our work demonstrates the topological insulator based moiré heterostructure as a potential platform for studying interacting topological phases. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)